MATH4210: Financial Mathematics Tutorial 1

Jiazhi Kang

The Chinese University of Hong Kong
jzkang@math.cuhk.edu.hk

14 September, 2022

Definition (Normal Distribution)

Given a real-valued random variable $X: \Omega \rightarrow \mathbb{R}$, it follows the normal distribution with parameters μ, σ if the probability density function (pdf) of X is given by $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$:

$$
\forall x \in \mathbb{R}, f(x):=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

It always denoted as $X \sim N\left(\mu, \sigma^{2}\right)$.

Exercise

Given $X \sim N\left(\mu, \sigma^{2}\right)$, compute the following:
(a). $\mathbb{E}(X), \mathbb{E}\left(X^{2}\right), \operatorname{Var}(X)$;
(b). $\mathbb{E}(|X|), \mathbb{E}\left((X-K)^{+}\right)$with K fixed;
(c). $\mathbb{E}\left(e^{i t X}\right)$ for t fixed (Characteristic Function).

Note that $f(t):=\mathbb{E}\left(e^{t X}\right)$ is called the Moment Generating Function.

$$
\begin{aligned}
& \text { Solution: } \\
& \begin{aligned}
\text { (a). } \mathbb{E}(x) & =\int_{\mathbb{R}} x \frac{1}{\sqrt{2 \pi} \cdot \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x . \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{\mathbb{R}} \underline{x e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}} d x .
\end{aligned} .
\end{aligned}
$$

let $y=x-\mu-\quad d y=d x$

$$
\begin{aligned}
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{\mathbb{R}}(y+\mu) e^{-\frac{y^{2}}{2 \sigma^{2}}} d y \\
& =\frac{1}{\sigma \sqrt{2 \pi}}\left[\int_{\mathbb{R}} y e^{-\frac{y^{2}}{2 \sigma^{2}}} d y+\mu \int_{\mathbb{R}} e^{-\frac{y^{2}}{2 \sigma^{2}}} d y\right]
\end{aligned}
$$

$$
=\frac{1}{\nabla \sqrt{2 \pi}} \int_{\mathbb{R}} y e^{\frac{-y^{2}}{x^{2}}} d y+\mu \cdot \int_{\mathbb{R}} f(y) d y
$$

$$
=0+\mu_{1}
$$

$$
\begin{aligned}
& \forall a \in \mathbb{R}_{+}, \int_{0}^{a} y e^{-\frac{y^{2}}{2 \sigma^{2}}} d y . \\
& \mathbb{E}(x)=\mu . \\
& \mathbb{E}\left(x^{2}\right)=\int_{\mathbb{R}} x^{2}-\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x .
\end{aligned}
$$

Change of variable, Integrate by Pant
(b). Option strike K. (vanilla).
pay of function. $f=x \mapsto(x-k)^{+}$

$$
\text { e.g. } \mathbb{E}\left[\left(S_{T}-K\right)^{+} \mid \sigma\left(S_{A}\right)_{t \in[0 . T]}\right]
$$

$x \sim N\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
& \mathbb{E}\left((x-k)^{\top}\right)=\mathbb{E}\left((x-k) \mathbb{1}_{\{x-k>0\}}\right) \\
& =\mathbb{E}\left(x \mathbb{1}_{\{x>k\}}\right)-k \cdot \mathbb{E}\left(\mathbb{1}_{\{x \geq k\}}\right) \text {. } \\
& \mathbb{E}(X \mathbb{1}\{x>k\}) \\
& P(x \geq k) . \\
& =\int_{\mathbb{R}} x \cdot \mathbb{1}_{\{x, x\}} \cdot \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x \\
& =\frac{1}{\nabla \sqrt{2 \pi}} \int_{k}^{+\infty} x e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x \text {. } \\
& v^{\text {let }} y=\frac{x-\mu}{r} \Rightarrow d x=\sigma d y \text {. } \\
& =\frac{1}{\nabla \sqrt{2 \pi}} \int_{\frac{k-\mu}{r}}^{+\infty} \nabla(\sigma y+\mu) e^{-\frac{y^{2}}{2}} d y
\end{aligned}
$$

Nate that $\frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{y^{2}}{2}}$ is the pdf of $N(0,1)$

$$
=\frac{1}{\sqrt{2 \pi}} \int_{\frac{k-\mu}{\sigma}}^{+\infty} \sigma y e^{-\frac{y^{2}}{2}} d y+\mu \cdot \int_{\frac{k-\mu}{\sigma}}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y
$$

Denote $\underline{\underline{x}}$ is the cal of $\overline{N(0,1)}$.

$$
\begin{aligned}
& =\frac{r}{\sqrt{2 \pi}} \int_{\frac{c-\mu}{r}}^{+\infty} y e^{-\frac{y^{2}}{2}} d y+\mu\left(1-\Phi\left(\frac{k-\mu}{r}\right)\right) \text {. } \\
& =\frac{\sigma}{\sqrt{2 \pi}} \cdot\left[-e^{-\frac{y^{2}}{2}}\right]_{\frac{k-\mu}{\sigma}}^{+\infty}+\mu\left(1-\Phi\left(\frac{k-\mu)^{2}}{\sigma \sigma^{2}}\right)\right) \\
& =\frac{\sigma}{\sqrt{2 \pi}} e^{-\frac{(k-\mu)^{2}}{2 \sigma^{2}}}+\mu\left(1-\Phi\left(\frac{k-\mu}{\sigma}\right)\right)
\end{aligned}
$$

$$
\mathbb{P}(x \geqslant k)
$$

say $Y \sim N(0,1)$. then $X=\sigma Y+\mu$.

$$
\begin{aligned}
\mathbb{P}(X \geqslant k) & =\mathbb{P}(\sigma Y+\mu \geqslant k) \\
& =\mathbb{P}\left(\mathbb{Y} \geqslant \frac{k-\mu}{\sigma}\right) \\
& =1-\mathbb{P}\left(Y \leqslant \frac{k-\mu}{\sigma}\right) \\
& =1-\Phi\left(\frac{k-\mu}{r}\right)
\end{aligned}
$$

$$
\text { So } E\left((x-k)^{+}\right)=\frac{\sigma}{\sqrt{2 \pi}} e^{-\frac{(k-\mu)^{2}}{2 \sigma^{2}}}+(\mu-k)\left(1-\Phi\left(\frac{k-\mu}{\sigma}\right)\right)
$$

$$
=\sigma\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{(k-\mu)^{2}}{2 \sigma^{2}}}+\frac{\mu-k}{\sigma} \Phi\left(\frac{\mu-k}{\sigma}\right)\right)
$$

$$
\begin{aligned}
\mathbb{E}(|x|) & =\mathbb{E}\left(x_{1 x \geq 00\}}-x \mathbb{1}_{\{x<0\}}\right) \\
& =\mathbb{E}\left(x \mathbb{1}_{\{x \geq 0\}}\right)-\mathbb{E}\left(x \mathbb{1}_{\{x<0\}}\right) \\
& =\int_{0}^{+\infty} x \cdots-\int_{-\infty}^{0} \cdots \cdots
\end{aligned}
$$

(c). $E\left(e^{i t x}\right)$ for $t \in \mathbb{R}$ given.
$t \mapsto \mathbb{E}\left(e^{i+x}\right)$ is called characteristic function.

$$
\begin{aligned}
\mathbb{E}\left(e^{i t x}\right) & =\int_{\mathbb{R}} e^{i t x} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\frac{1}{2 \sigma^{2}}\left((x-\mu)^{2}-2 \sigma^{2} i t x\right)} d x
\end{aligned}
$$

$$
\begin{aligned}
&(x-\mu)^{2}-2 \sigma^{2} i t x=x^{2}-2\left(\mu+\sigma^{2} i t\right) x+\left(\mu+\sigma^{2} i t\right)^{2}+\mu^{2}-\left(\mu+\sigma^{2} i t\right)^{2} \\
&=\left(x-\left(\mu+\sigma^{2} i t\right)\right)^{2}-2 \mu \sigma^{2} i t+\sigma^{4} t^{2} \\
& \Rightarrow \mathbb{E}\left(e^{i t x}\right)=e^{\mu i t-\frac{1}{2} \sigma^{2} t^{2}} \int_{\mathbb{R}} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2 \sigma^{2}}\left(x-\left(\mu+\sigma^{2} i t\right)\right)^{2}} d x
\end{aligned}
$$

$$
=e^{\mu i t-\frac{1}{2} \sigma^{2} t^{2}}
$$

Exercise

Suppose $X_{k} \sim N\left(\mu_{k}, \sigma_{k}^{2}\right), \mu_{k}, \sigma_{k}$ convergent, and $X_{k} \rightarrow X$ in \mathbb{L}^{2}. Show X is a normal random variable with $\mathbb{E}[X]=\lim \mu_{k}$ and $\operatorname{Var}(X)=\lim \sigma_{k}^{2}$.

Solution:
We claim that $X_{k} \rightarrow X$ in \mathbb{L}^{2} implies $X_{k} \rightarrow X$ in \mathbb{L}^{1}. We accept this for now.
Fix $t \in \mathbb{R}$ and $k \in \mathbb{N}$, consider the characteristic function:

$$
\begin{aligned}
\mathbb{E}\left[\left|e^{i t X_{k}}-e^{i t X}\right|^{2}\right] & \leq t^{2} \mathbb{E}\left[\left|X_{k}-X\right|^{2}\right] \\
& \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

It follows from the fact: $\forall x, y \in \mathbb{R}, a \in \mathbb{R}$:

$$
\left|e^{i a y}-e^{i a x}\right|=\left|\int_{x}^{y} i a e^{i a s} d s\right| \leq|a| \int_{x}^{y} 1 d s \leq|a||y-x|
$$

Therefore, $e^{i t X_{k}} \rightarrow e^{i t X}$ in \mathbb{L}^{2}. By the claim, $e^{i t X_{k}} \rightarrow e^{i t X}$ in \mathbb{L}^{1}. Then

$$
\begin{aligned}
& \mathbb{E}\left(e^{i t X_{k}}\right)-\mathbb{E}\left(e^{i t X}\right) \leq \mathbb{E}\left(\left|e^{i t X_{k}}-e^{i t X}\right|\right) \rightarrow 0{ }_{i} \lim _{k} \mu_{k}-\frac{1}{2} \tau^{2} \lim _{k \rightarrow+\infty} \sigma_{k}^{2} \\
& \mathbb{E}\left(e^{i t x}\right)=\lim _{k \rightarrow+\infty} \mathbb{E}\left(e^{i t x_{k}}\right)=e_{k \rightarrow+\infty}^{i} e^{i \psi_{k} t-\frac{1}{2} \sigma_{k} t^{2}}=e^{i \neq} .
\end{aligned}
$$

Hence, X is normal as characteristic function uniquely identifies distributions. Moreover, the characteristic functions of X coincides with limit of that of X_{k} 's. By continuity, we then deduce $\mathbb{E}(X)=\lim \mu_{k}$ and $\operatorname{Var}(X)=\lim \sigma_{k}^{2}$.
The claim can be proven by Jensen's inequality or Cauchy-Schwarz inequality.

$$
\begin{aligned}
\mathbb{E}\left(\left|X_{k}-X\right|\right) & =\mathbb{E}\left(\sqrt{\left|X_{k}-X\right|^{2}}\right) \\
& \left.\leq \sqrt{\mathbb{E}\left(\left|X_{k}-X\right|^{2}\right.}\right) \\
& \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

Exercise

Let $\left(Y_{j}\right)_{j \in \mathbb{N}}$ be a sequence of i.i.d. random variables. For any $j \in \mathbb{N}, \mathbb{P}\left(Y_{j}= \pm 1\right)=\frac{1}{2}$. Define for $n \in \mathbb{N}, X_{n}=\sum_{j=1}^{n} Y_{j}$. Show that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a martingale.

Solution:
In order to prove that $\left(X_{n}\right)$ is a martingale, we are going to verify by definition.

1. Fix $n \in \mathbb{N}$.

$$
\begin{aligned}
\mathbb{E}\left(\left|X_{n}\right|\right) & =\mathbb{E}\left(\left|\sum_{j=1}^{n} Y_{j}\right|\right) \\
& \leq \sum_{j=1}^{n} \mathbb{E}\left(\left|Y_{j}\right|\right) \\
& =n\left(1 * \frac{1}{2}+|-1| * \frac{1}{2}\right) \\
& =n<\infty
\end{aligned}
$$

2. Fix $n \in \mathbb{N}$, denote $\mathcal{F}_{n}=\sigma\left(X_{0}, \ldots, X_{n}\right)$.

$$
\begin{aligned}
\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right) & =\mathbb{E}\left(X_{n}+Y_{n+1} \mid \mathcal{F}_{n}\right) \\
& =\mathbb{E}\left(X_{n} \mid \mathcal{F}_{n}\right)+\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right) \\
& =X_{n}+\mathbb{E}\left(Y_{n+1}\right) \\
& =X_{n}
\end{aligned}
$$

By 1 and 2, $\left(X_{n}\right)$ is a martingale.

Remark

It still works when $\mathbb{P}\left(Y_{j}=2\right)=\frac{1}{3}$ and $\mathbb{P}\left(Y_{j}=-1\right)=\frac{2}{3}$. $\left(X_{n}\right)$ will still be a martingale as long as the expectation is 0 (Exercise!).

